
PATHOPHYSIOLOGY

Structures Related with Headache

Primary vs. Secondary Headache

Primary Headache

Not a symptom of or caused by another disease or condition

Secondary Headache

A symptom of or caused by an underlying disease or condition, such as tumor or infection

PRIMARY HEADACHE

Type of Headache	Pain Location	Quality of Pain	Pain Severity	Duration	Unique Features
Tension type Headache	2	CONTRACTOR	10 9 8 7 6 5 4 3		No other Symptoms except for band-like tightness or presure pain caused by muscle con- tractions of head & neck.
Sinus Headache			10 9 8 7 6 5 4 3 2	(- HD)	Bad-braeathe, Nasal discharge almost always preceded by cold, respi- ratory infections and allergies.
Migraine			10 9 8 7 6 5 4 3	9 3 3 8 7 6 5 4	neurological dysfunction nausea, photophoba, phonophobia, parasthe- sions, disorientation, mental cloudiness and "TRIGGERS".
Cluster Headache		Ca	10 9 8 7 6 5 4 3		Eyeredress/tearing con- gested & Runny nose.

Causes of Primary Headaches

- No underlying disease is responsible for the symptoms
- Caused by problems with or over-activity of pain structures in the brain
- Some primary headaches can be triggered by lifestyle factors:
- Alcohol especially red wine
- Certain foods (e.g., processed meats containing nitrates)
- Changes in sleep or lack of sleep
- Poor posture
- Skipped meals
- Stress

Causes of Secondary Headaches

Acute sinusitis

Concussion

Hangovers

Panic attacks

Arterial tears

Dehydration

Influenza

 Post-concussion syndrome

- Blood clot in the brain (non-stroke)
- Dental problems
- Intracranial hematoma

 Pressure from tightfitting headgear

- Brain aneurysm
- Ear infection (middle ear)

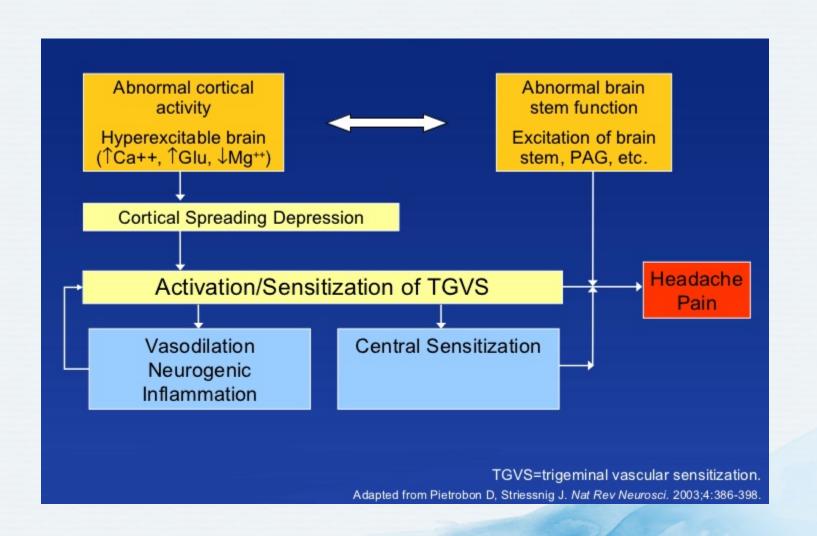
- Medications to treat other disorders
- Pseudotumor cerebri

- Brain arteriovenous malformation
- Encephalitis

Meningitis

Toxoplasmosis

- Carbon monoxide poisoning
- Giant cell arteritis
- Monosodium glutamate


Trigeminal neuralgia

- Chiari malformation
- Glaucoma

 Overuse of pain medication

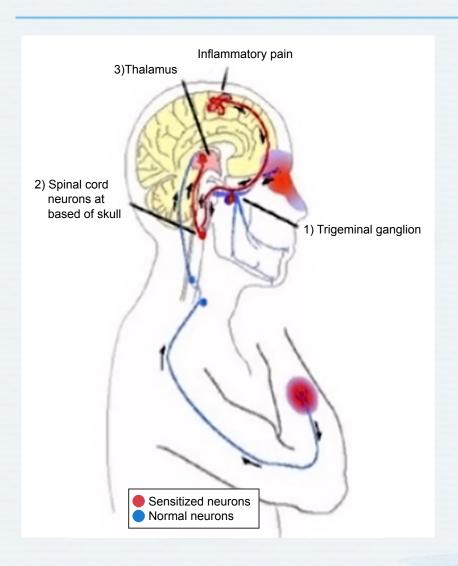
A wide range of possible causes with varying severity

Proposed Mechanisms of Migraine

Migraine Mechanisms

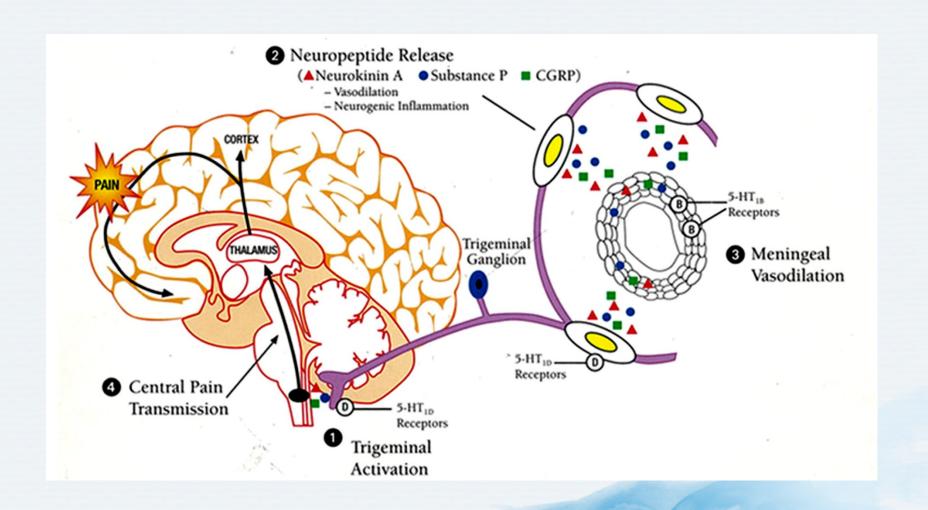
- Trigeminal vascular system serves as a common pathway for migraine with and without aura
- How migraine pain is triggered and the cascade of events following original activation are not completely understood
- Connection between cortical spreading depression (CSD) and activation of trigeminal nerve afferents
 - Activation of trigeminal nerve → a series of meningeal and brainstem events consistent with what is observed during a migraine attack
 - Triggering CSD → long-lasting blood flow increase in middle meningeal artery
 - Increased blood flow depends on trigeminal and parasympathetic activation

Migraine Mechanisms


- Bidirectional conduction along trigeminal nerve sensitizes surround nerve fibers
 - Conveys painful stimuli to trigeminal nucleus caudalis in brainstem for transmission to higher centers
 - Leads to the throbbing pain, nausea, photophobia, and phonophobia that characterize migraine

Migraine and Sensitization

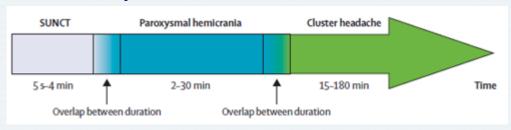
- Patients often report increased sensory sensitivity during a migraine attack
- Symptoms may be regulated by central or peripheral mechanisms
 - Peripheral sensitization → throbbing, exacerbation of pain with movement
 - Central sensitization → cutaneous allodynia (increased sensitivity to touch)

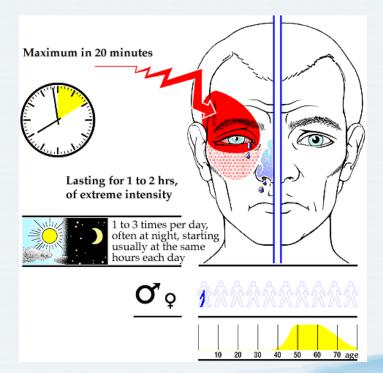

Not all patients have central sensitization but most patients have peripheral sensitization

Central Sensitization in Migraine

- Migrateurs develop increased to stimuli due to increased excitability
- About 2/3 of migraine patients suffered from cutaneous allodynia during attacks due to central sensitization

The Process of Migraine Pain


Migraine Aura


Only 15% of patients with migraine experience aura

- Rate of expansion calculated at ~3-6 mm/min
- Initial hyperemia is followed by oligemia, which spreads from the occipital cortex at a rate of 2 to 6 mm/min
- Headache usually starts while cerebral blood flow is diminished

Trigeminal Autonomic Cephalgias (TACs)

Overlap between attack duration in TACs

Watery eye, drooping eyelid, runny nose

Cluster Headaches (Trigeminal Autonomic Cephalalgias)

- Attacks of severe, strictly unilateral pain that is orbital, supraorbital, temporal, or any combination of these
- Duration: 15 minutes to 3 hours
- Frequency: one every other day to eight times/day
- Associated symptoms:
 - Ipsilateral conjunctival injection
 - Lacrimation
 - Nasal congestion
 - Rhinorrhea
 - Forehead and facial sweating
 - Miosis
 - Ptosis and/or eyelid edema
 - Restlessness/agitation

Pathogenesis of Cluster Headaches (Trigeminal Autonomic Cephalalgias)

A unifying pathophysiologic explanation of cluster headache is not yet available

Pathophysiology of Cluster Headaches

- May involve an autosomal dominant gene
- Carotid and ophthalmic artery vasodilation and an increased sensitivity to vasodilator stimuli during an attack may be triggered by trigeminal parasympathetic reflexes
- May involve autonomic function abnormality with increased parasympathetic drive and decreased sympathetic function
- May be a disorder of circadian rhythm: attacks often begin during sleep
- Reduced oxygenation may trigger attacks
 - Increased prevalence of sleep apnea in patients with cluster headaches

Tension-Type Headache

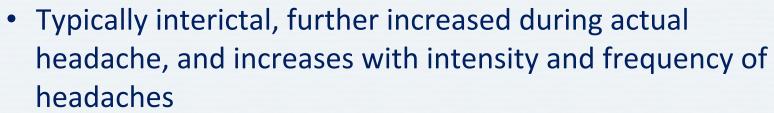
- Anxiety
- Stress
- Noise
- Alcohol
- Medications

Transient

Episodic

Chronic

stabbing pain

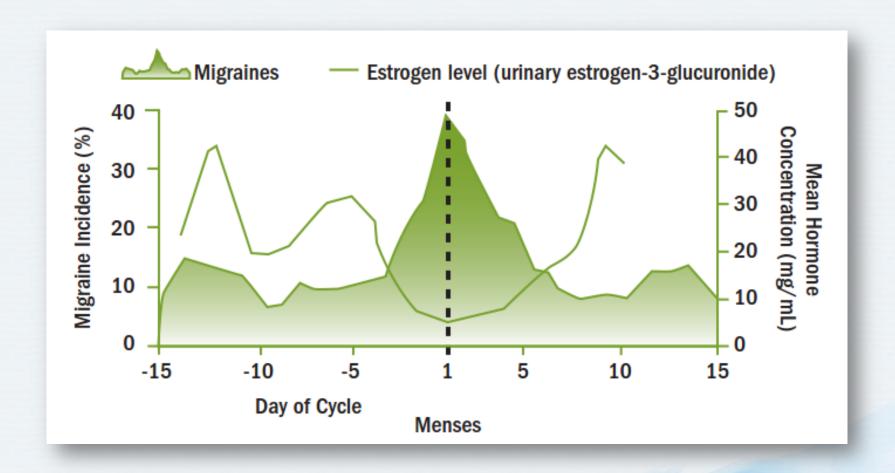


Persistent, variably severe headache

Tension-Type Headache (TTH)

- Very common: lifetime prevalence 30 to 78%
- Four subtypes:
 - Infrequent episodic
 - Frequent episodic
 - Chronic
 - Probable

It can be difficult to discriminate between TTH and migraine without aura Patients with frequent headaches often suffer from both disorders


Pathophysiology of Tension-Type Headache (TTH)

- Complex and multifactorial pathology with contributions from central and peripheral factors²
- May be due to abnormal neuronal sensitivity and pain facilitation – not abnormal muscle contraction
- Associated with exteroceptive suppression, abnormal platelet serotonin, and decreased cerebrospinal fluid beta-endorphin
- Extracranial myofascial nociception and hypersensitivity of neurons in the trigeminal nucleus caudalis may play a role
- May involve central sensitization at spinal dorsal horn/ trigeminal nucleus due to prolonged nociceptive inputs from pericranial myofascial tissues

Menstrual Migraine

- ~ 60% of female migraine sufferers have menstrual migraines
- Reduced estrogen at menstruation can trigger migraine in many women
- May be more persistent, painful, and resistant to treatment than migraines that occur at other times
- ICHD criteria: Migraine without aura occurring between 2 days prior and 3 days after the onset of menses and in 2 of 3 menstrual cycles
 - Some women experience migraine perimenstrually
- Headache diary should be used to record timing of menstrual migraines

Estrogen Levels and Menstrual Migraine

Literature Cited

American Headache Society. (2004). Brainstorm. Retrieved June 18, 2015, from http://www.americanheadachesociety.org/assets/1/7/Book_-_Brainstorm_Syllabus.pdf
Beck, E., Sieber, W. J., & Trejo, R. (2005). Management of cluster headache. *American Family Physician*, 71(4), 717–724.

Burstein, R., Yarnitsky, D., Goor-Aryeh, I., Ransil, B. J., & Bajwa, Z. H. (2000). An association between migraine and cutaneous allodynia. *Annals of Neurology*, *47*(5), 614–624.

Goadsby, P. J., Lipton, R. B., & Ferrari, M. D. (2002). Migraine--current understanding and treatment. *The New England Journal of Medicine*, *346*(4), 257–270. http://doi.org/10.1056/NEJMra010917

Headache Causes - Mayo Clinic. (n.d.). Retrieved June 18, 2015, from http://www.mayoclinic.org/symptoms/headache/basics/causes/sym-20050800

Headache Classification Committee of the International Headache Society (IHS). (2013). The International Classification of Headache Disorders, 3rd edition (beta version). *Cephalalgia: An International Journal of Headache*, 33(9), 629–808. http://doi.org/10.1177/0333102413485658

Literature Cited (Continued)

Lauritzen, M. (1994). Pathophysiology of the migraine aura. *Brain*, *117*(1), 199–210. http://doi.org/10.1093/brain/117.1.199

Menstrual Migraine: Breaking the Cycle. (n.d.). Retrieved June 18, 2015, from http://practicingclinicians.com/cms/wb/PCEv3/site/hs09_pdfs/migraine.pdf

Olesen, J., Friberg, L., Olsen, T. S., Iversen, H. K., Lassen, N. A., Andersen, A. R., & Karle, A. (1990). Timing and topography of cerebral blood flow, aura, and headache during migraine attacks. *Annals of Neurology*, *28*(6), 791–798. http://doi.org/10.1002/ana.410280610

Pietrobon, D., & Striessnig, J. (2003). Neurobiology of migraine. *Nature Reviews. Neuroscience*, 4(5), 386–398. http://doi.org/10.1038/nrn1102

Singh, M. (2015). Muscle Contraction Tension Headache: Background, Pathophysiology, Epidemiology. Retrieved from http://emedicine.medscape.com/article/1142908-overview

Woods, R. P., Iacoboni, M., & Mazziotta, J. C. (1994). Brief report: bilateral spreading cerebral hypoperfusion during spontaneous migraine headache. *The New England Journal of Medicine*, 331(25), 1689–1692. http://doi.org/10.1056/NEJM199412223312505