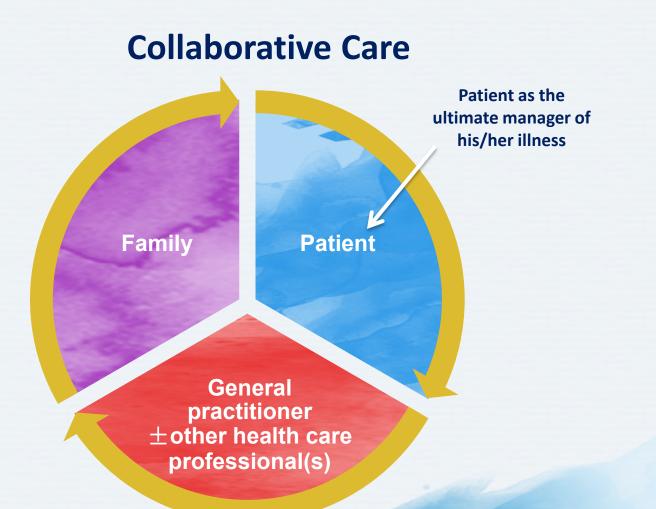

MANAGEMENT

Goals of Treatment

Goals in Pain Management

- Involve the patient in the decision-making process
- Agree on realistic treatment goals before starting a treatment plan

Farrar JT et al. Pain 2001; 94(2):149-58; Gilron I et al. CMAJ 2006; 175(3):265-75.

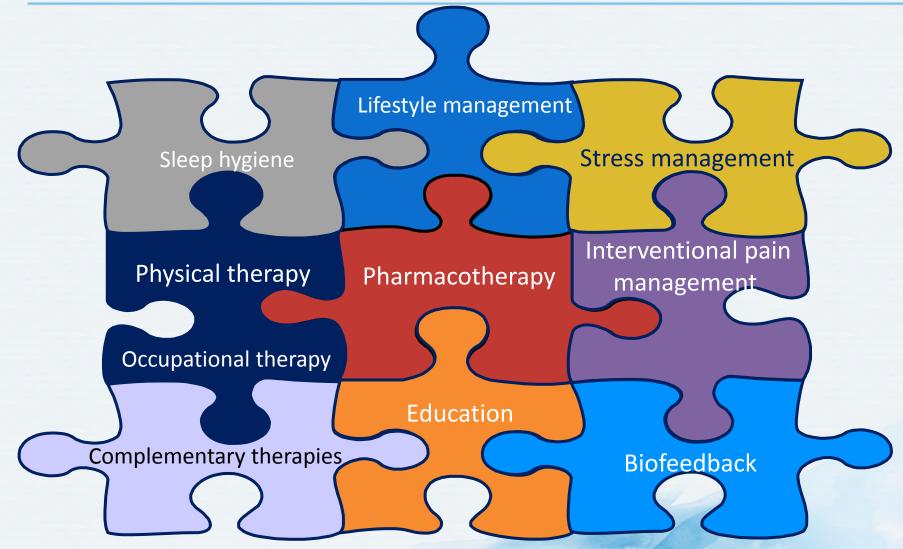

Pain Should Be Treated in a Timely Manner

IASP Recommendations for Wait Times		
Wait time	Condition	
Treat immediately	Acute painful conditions	
1 week (most urgent)	 Painful severe condition with risk of deterioration or chronicity Pain in children Pain related to cancer or terminal or end-stage illness 	
1 month (urgent or semi-urgent)	 Severe undiagnosed or progressive pain with risk of increasing functional impairment, generally of 6 months' duration or less 	
8 weeks (routine or regular)	Persistent long-term pain without significant progression	

IASP = International Association for the Study of Pain

International Association for the Study of Pain Task Force on Wait-Times. *Summary and Recommendations*. Available at: http://www.iasppain.org/AM/Template.cfm?Section=Wait_Times&Template=/CM/ContentDisplay.cfm&ContentID=13107. Accessed: August 28, 2013.

Deciding on the Best Course of Treatment for the Patient


Ayad AE et al. J Int Med Res 2011; 39(4):1123-41; Saltman D et al. Med J Aust 2001; 175(Suppl):S92-6.

Treatments for Pain

- Medications
- Regional anesthetic interventions
- Surgery
- Psychological therapies
- Rehabilitative/physical therapies
- Complementary and alternative medicine

Institute of Medicine. Relieving Pain in America: A Blueprint for Transforming Prevention, Care, Education, and Research. The National Academies Press; Washington, DC: 2011.

Multimodal Treatment of Pain Based on Biopsychosocial Approach

Gatchel RJ *et al.* Psychol Bull 2007; 133(4):581-624; Institute of Medicine. Relieving Pain in America: A Blueprint for Transforming Prevention, Care, Education, and Research.; National Academies Press; Washington, DC: 2011; Mayo Foundation for Medical Education and Research. Comprehensive Pain Rehabilitation Center Program Guide. Mayo Clinic; Rochester, MN: 2006.

Non-pharmacological Treatment

Non-pharmacological Interventions

- Non-pharmacological interventions are commonly used in clinical practice
- Establishing reliable evidence of efficacy and effectiveness can be challenging in terms of design and interpretation of studies

Type of therapy	Examples
Psychological	 Hypnosis Relaxation Cognitive behavioral therapy
Physical	 Acupuncture Transcutaneous electrical nerve stimulation Healing touch and massage Occupational therapy
Clinical process	 Pain assessment Physician advice and communication Education

Psychological Therapies

- Individual and group counseling
- Biofeedback
- Relaxation techniques
- Self-hypnosis
- Visual imaging
- Learning or conditioning techniques
- Behavioral techniques
- Cognitive techniques
- Psychotherapy

American Academy of Pain Management. *Essential Tools for Treating the Patient in Pain*. Available at: http://www.painmed.org/annualmeeting/2012-essential-tools-course-information/. Accessed: June 12, 2012; Kerns RD *et al. Annu Rev Clin Psychol* 2011; 7:411-34.

Rehabilitative/Physical Therapies

- Heat
- Deep heat (ultrasound)
- Cryotherapy
- Aquatic therapy
- Transcutaneous electrical nerve stimulation
- Iontophoresis and phonophoresis
- Traction
- Exercise
- Manual therapy
- McKenzie method
- Core stabilization

American Academy of Pain Management. *Essential Tools for Treating the Patient in Pain*. Available at: http://www.painmed.org/annualmeeting/2012-essential-tools-course-information/. Accessed: June 12, 2012.

What is complementary and alternative medicine?

A group of diverse medical and health care systems, practices, and products that are not generally considered part of conventional medicine.

NCCAM definition

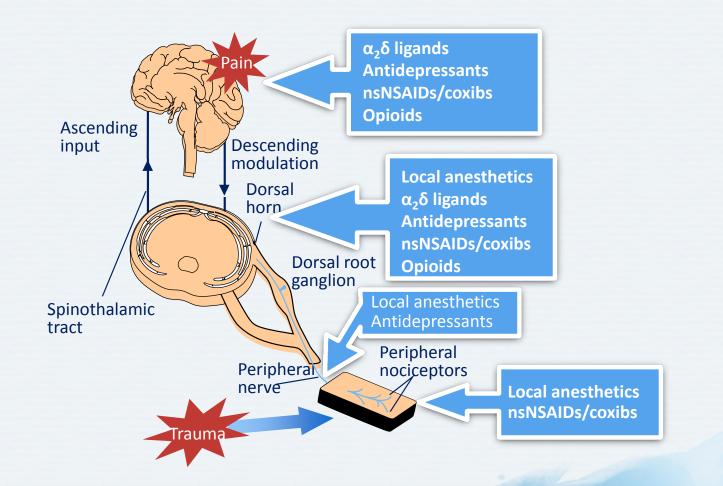
NCCAM = National Center for Complementary and Alternative Medicine National Institutes of Health. *Complementary, Alternative, or Integrative Health: What`s in a name?* Available at: http://nccam.nih.gov/health/whatiscam/#definingcam. Accessed: July 12, 2013.

Evidence of Potential Benefits of Complementary and Alternative Medicine

	Arthritis	Headache	Low back pain	Neck pain
Acupuncture	V	V	V	Х
Balneotherapy (mineral baths)	Х			
Feverfew		Х		
Gamma linoleic acid	Х			
Glucosamine/chondroitin	Х			
Herbal remedies	Х		Х	
Massage			٧	
Spinal manipulation		V	٧	Х
Progressive relaxation			٧	
Prolotherapy			Х	
Tai chi	Х			
Yoga			V	

v = promising evidence of potential benefit; X = limited, mixed or no evidence to support use

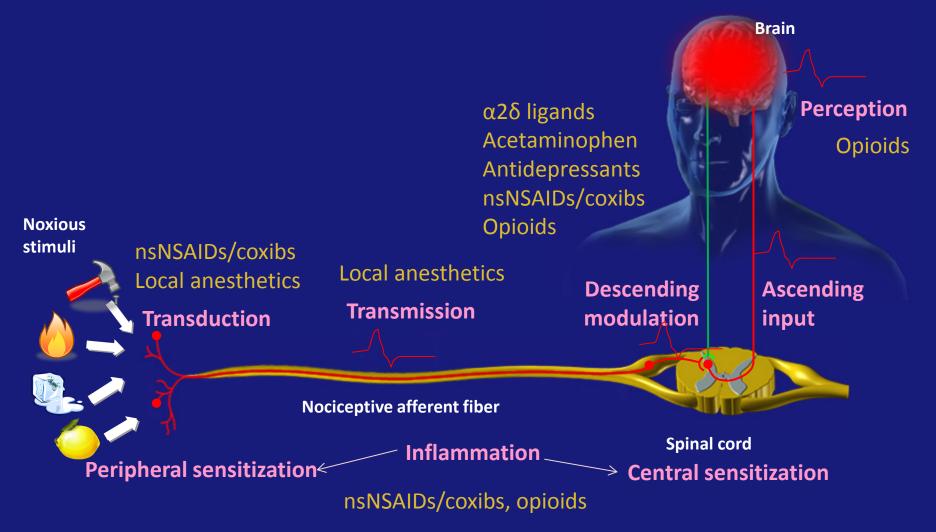
National institutes of Health. Chronic Pain and CAM: At a Glance. Available at: <u>http://nccam.nih.gov/health/pain/chronic.htm</u>. Accessed: July 29, 2013.


Treating Pain: Use a Mind-Body Approach

- Biopsychosocial approach to assessing and treating chronic pain offers a uniquely valuable clinical perspective
- Mind-body perspective now generally accepted by pain researchers
- Found to be useful by clinicians in various disciplines, such as osteopathic medicine, rheumatology, and physiotherapy

Institute of Medicine. *Relieving Pain in America: A Blueprint for Transforming Prevention, Care, Education, and Research.* The National Academies Press; Washington, DC: 2011.

Pharmacological Treatment


Analgesics Affect Different Parts of the Pain Pathway

Coxib = COX-2 inhibitor; nsNSAID = non-specific non-steroidal anti-inflammatory drug

Adapted from: Gottschalk A et al. Am Fam Physician 2001; 63(10):1979-84; Verdu B et al. Drugs 2008; 68(18):2611-32.

Mechanism-Based Pharmacological Treatment of Nociceptive/Inflammatory Pain

Coxib = COX-2 inhibitor; nsNSAID = non-specific non-steroidal anti-inflammatory drug Scholz J, Woolf CJ. *Nat Neurosci* 2002; 5(Suppl):1062-7.

Acetaminophen

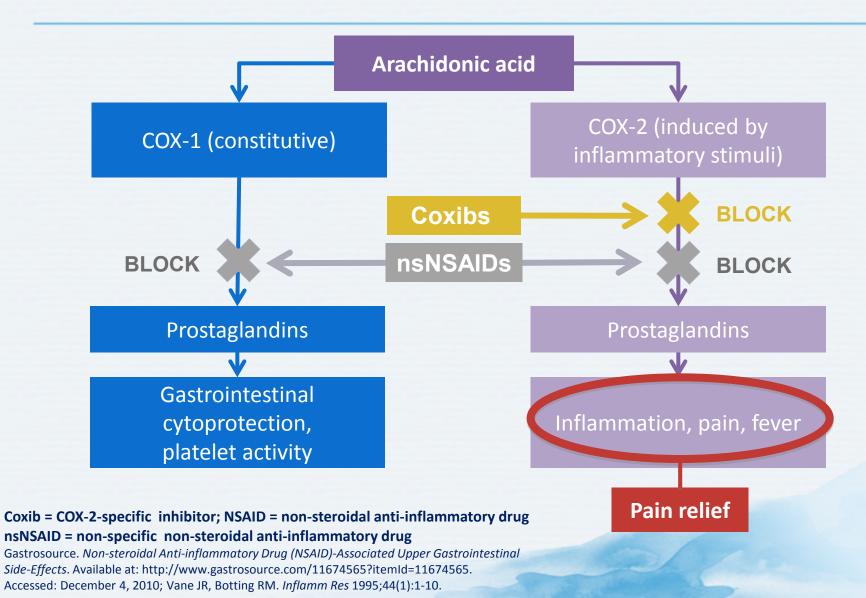
- Action at molecular level is unclear
- Potential mechanisms include:
 - Inhibition of COX enzymes (COX-2 and/or COX-3)
 - Interaction with opioid pathway
 - Activation of serotoninergic bulbospinal pathway
 - Involvement of nitric oxide pathway
 - Increase in cannabinoid-vanilloid tone

What are NSAIDs (nsNSAIDs/coxibs)?

NSAID = Non-Steroidal Anti-Inflammatory Drug

- Analgesic effect via inhibition of prostaglandin production
- Broad class incorporating many different medications:

Examples of nsNSAIDs:


- Diclofenac
- Ibuprofen
- Naproxen

Examples of Coxibs:

- Celecoxib
- Etoricoxib
- Parecoxib

ASA = acetylsalicylic acid; coxib = COX-2-specific inhibitor; nsNSAID = non-specific non-steroidal anti-inflammatory drug Brune K. In: Kopf A *et al* (eds). *Guide to Pain Management in Low-Resource Settings*. International Association for the Study of Pain; Seattle, WA: 2010.

How do nsNSAIDs/coxibs work?

COX-2 Is Expressed in the CNS

- Prostaglandins in the CNS are important in central sensitization and hyperalgesia¹
- Peripheral inflammation leads to central induction of COX-2²
 - Occurs even with complete sensory nerve block³
 - Humoral signal (IL-6?) may play a role in signal transduction across blood-brain barrier³
 - IL-1beta plays an important role centrally³
 - Elevation of prostaglandins in CSF lead to hyperalgesia³
 - Inhibition of IL-1beta synthesis or receptors reduce CSF levels of COX-2, prostaglandin and hyperalgesia³
 - Inhibition of COX-2 centrally has similar effects^{3,4}

CNS = central nervous system; CSF = cerebrospinal fluid; IL = interleukin

1. Taiwo YO, Levine JD. Brain Res 1986; 373(1-2):81-4; 2. Ghilardi JR et al. J Neurosci 2004; 24(11):2727-32;

3. Samad TA et al. Nature 2001; 410(6827):471-5; 4. Smith CJ et al. Proc Natl Acad Sci US 1998; 95(22):13313-8.

COX-2 Results in Sensitization to Pain

- Peripheral Sensitization
 - COX-2 is expressed following tissue injury
 - Prostaglandins produced increase nociceptor sensitivity to pain
- Central Sensitization
 - Peripheral inflammation leads to induction of COX-2 in CNS
 - Occurs even with complete sensory nerve block, possibly due to a humoral signal
 - Prostaglandins produced by COX-2 in CNS cause further sensitization to pain
- Result: hyperalgesia and allodynia

CNS = central nervous system

Ahmadi S et al. Nat Neurosci 2002; 5(1):34-40; Baba H et al. J Neurosci 2001; 21(5):1750-6; Samad TA et al. Nature 2001; 410(6827):471-5; Woolf CJ, Salter MW. Science 2000; 288(5472):1765-9.

COX-2 Is Involved in Central Sensitization

- Central induction of COX-2 result in increased prostaglandin production
- PGE2 stimulation of EP receptors in the dorsal horn will:
 - Activate PKC, phosphorylating and further enhancing NMDA channel opening
 - Directly activate certain dorsal horn neurons by opening EP2 receptor linked ion channels
 - Reduced inhibitory transmission of glycinergic inter-neurons
 - Increased depolarization and excitability of dorsal horn neurons

COX-2 Inhibition Minimizes Sensitization

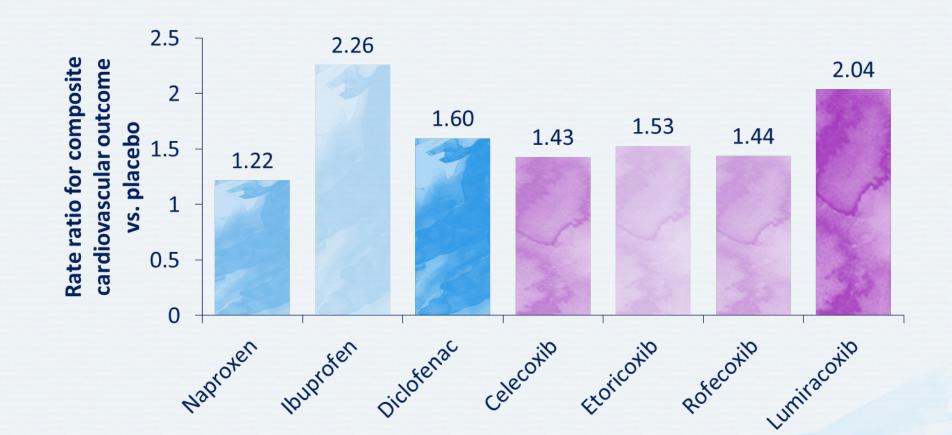
- Signal for COX-2 induction likely to persist with peripheral inflammation
- To minimize sensitization, COX-2 should be inhibited centrally and in the periphery
 - As early as possible
 - Continued until peripheral inflammation resolved
- Ideal COX-2 inhibitor should be able to act in periphery as well as centrally

- Should readily cross blood-brain barrier

Adverse Effects of nsNSAIDs/Coxibs

All NSAIDs:

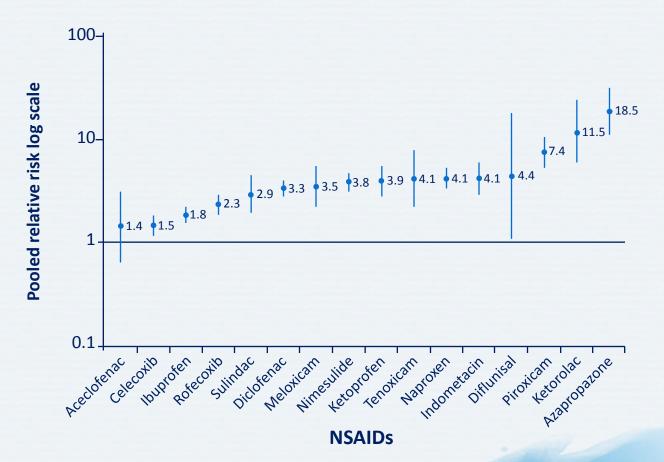
- Gastroenteropathy
 - Gastritis, bleeding, ulceration, perforation
- Cardiovascular thrombotic events
- Renovascular effects
 - Decreased renal blood flow
 - Fluid retention/edema
 - Hypertension
- Hypersensitivity


Cox-1-mediated NSAIDs (nsNSAIDs):

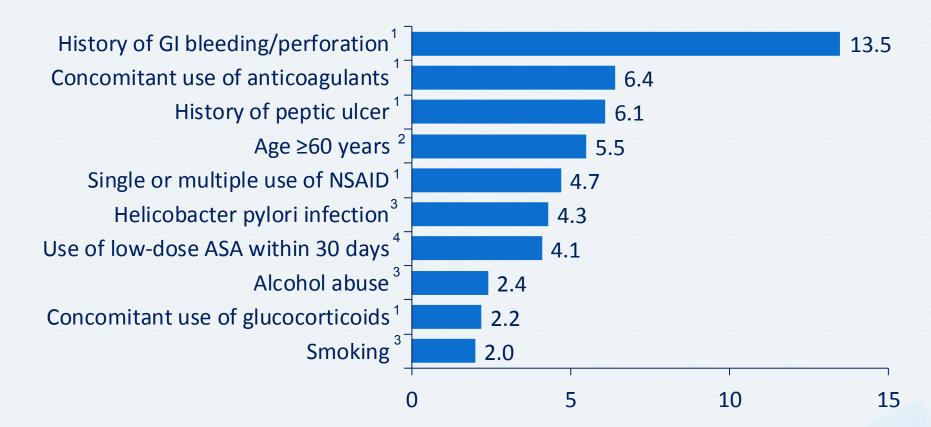
Decreased platelet aggregation

Coxib = COX-2-specific inhibitor; NSAID = non-steroidal anti-inflammatory drug; nsNSAID = non-specific non-steroidal anti-inflammatory drug

Clemett D, Goa KL. *Drugs* 2000; 59(4):957-80; Grosser T *et al.* In: Brunton L *et al* (eds.). *Goodman and Gilman's The Pharmacological Basis of Therapeutics*. 12th ed. (online version). McGraw-Hill; New York, NY: 2010.


nsNSAIDs/Coxibs and Cardiovascular Risk

Composite includes non-fatal myocardial infarction, non-fatal stroke, or cardiovascular death compared with placebo; chart based on network meta-analysis involving 30 trials and over 100,000 patients. Coxib = COX-2 inhibitor; nsNSAID = non-specific non-steroidal anti-inflammatory drug Trelle S *et al. BMJ* 2011; 342:c7086.


Gastrointestinal Risk with nsNSAIDs/Coxibs

Pooled Relative Risks and 95% CIs of Upper Gastrointestinal Complications

CI = confidence interval; coxib = COX-2 inhibitor; NSAID = non-steroidal anti-inflammatory drug; nsNSAID = non-specific non-steroidal anti-inflammatory drug Castellsague J *et al. Drug Saf* 2012; 35(12):1127-46.

Risk Factors for Gastrointestinal Complications Associated with nsNSAIDs/Coxibs

Odds ratio/relative risk for ulcer complications

ASA = acetylsalicylic acid; coxib = COX-2-specific inhibitor; GI = gastrointestinal; NSAID = non-steroidal anti-inflammatory drug; nsNSAID = non-specific non-steroidal anti-inflammatory drug; SSRI = selective serotonin reuptake inhibitor

1. Garcia Rodriguez LA, Jick H. Lancet 1994; 343(8900):769-72; 2. Gabriel SE et al. Ann Intern Med 1991; 115(10):787-96;

3. Bardou M. Barkun AN. Joint Bone Spine 2010; 77(1):6-12; 4. Garcia Rodríguez LA, Hernández-Díaz S. Arthritis Res 2001; 3(2):98-101.

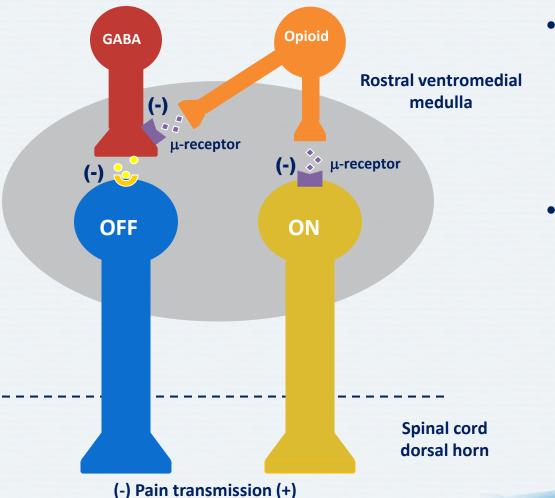
Guidelines for nsNSAIDs/Coxibs Use Based on Gastrointestinal Risk and ASA Use

	Gastrointestinal risk		
	Not elevated	Elevated	
Not on ASA	nsNSAID alone	Coxib	
		nsNSAID + PPI	
On ASA	Coxib + PPI	Coxib + PPI	
	nsNSAID + PPI	nsNSAID + PPI	

ASA = acetylsalicylic acid; coxib = COX-2-specific inhibitor; nsNSAID = non-selective non-steroidal anti-inflammatory drug; PPI = proton pump inhibitor Tannenbaum H *et al. J Rheumatol* 2006; 33(1):140-57.

How Opioids Affect Pain

Modify perception, modulate transmission Brain and affect transduction by: Altering limbic system activity; Perception modify sensory and affective pain aspects Activating descending pathways that modulate -transmission in spinal cord Affecting transduction of pain stimuli to nerve impulses Descending Ascending Transmission Transduction modulation input **Nociceptive afferent fiber Spinal cord**


Reisine T, Pasternak G. In: Hardman JG et al (eds). Goodman and Gilman's: The Pharmacological Basics of Therapeutics. 9th ed. McGraw-Hill; New York, NY: 1996; Scholz J, Woolf CJ. Nat Neurosci 2002; 5(Suppl):1062-7; Trescot AM et al. Pain Physician 2008; 11(2 Suppl):S133-53.

Opioids and Pain Management

Opioid Receptor	Response
Mu	Supraspinal analgesia, respiratory depression, sedation, miosis, euphoria, cardiovascular effects, pruritis, nausea/vomiting, decreased gastrointestinal motility, dependence, tolerance
Delta	Analgesia, euphoria, dysphoria, psychotomimetic effects
Карра	Spinal analgesia, dysphoria, psychotomimetic effects, miosis, respiratory depression, sedation

Gourlay GK. Support Care Cancer 2005; 13(3):153-9.;Reisine T et al. In: Hardman JG et al (eds). Goodman and Gilman's: The Pharmacological Basics of Therapeutics. 9th ed. McGraw-Hill; New York, NY: 1996.; Trescot AM et al. Pain Physician 2008; 11(2 Suppl):S133-53. Gourlay GK. Supp Care Cancer. 2005;13:153-9.

Opioids Modulate Control of "ON" and "OFF" Cells

Opioid stimulation of mu-receptors on "ON" cells

- Reduced "ON" cell activity
- Reduced facilitation of pain transmission at dorsal horn

- Less pain

- Opioid stimulation of mu-receptors on GABA-ergic interneurons innervating "OFF" cells
 - Reduced GABA-ergic interneuron activity
 - Reduced inhibition of "OFF" cells
 - Increased "OFF" cell inhibition of pain transmission at dorsal horn

- Less pain

GABA = γ -aminobutyric acid

Fields HL et al. In: McMahon SB, Koltzenburg M (eds). Wall and Melzack's Textbook of Pain. 5th ed. Elsevier; London, UK: 2006.

Opioids Can Induce Hyperalgesia

Primary hyperalgesia

- Sensitization of primary neurons → decrease threshold to noxious stimuli within site of injury
- May include response to innocuous stimuli
- Increase pain from suprathreshold stimuli
- Spontaneous pain
- Secondary hyperalgesia
 - Sensitization of primary neurons in surrounding uninjured areas
 - May involve peripheral and central sensitization

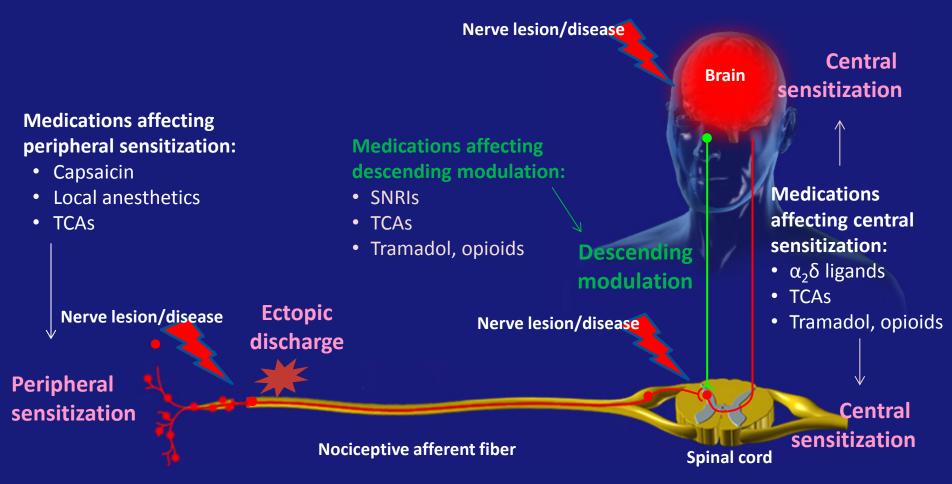
Dolan S, Nolan AM. *Neuroreport* 1999; 10(3):449-52; Raja SN *et al.* In: Wall PB, Melzack R (eds). *Textbook of Pain*. 4th ed. Churchhill Linvingstone; London, UK: 1999; Woolf CJ. *Drugs* 1994; 47(Suppl 5):1-9.

Opioids Can Induce Allodynia

- Pain evoked by innocuous stimuli
- Central sensitization \rightarrow pain produced by A β fibers
- Possibly mediated by spinal NMDA receptors

NMDA = N-methyl-D-aspartate

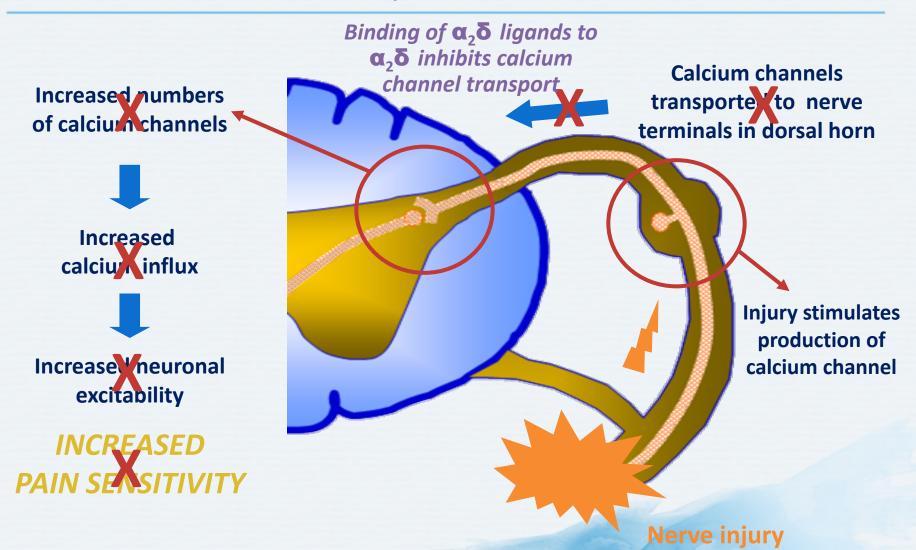
Dolan S, Nolan AM. *Neuroreport* 1999; 10(3):449-52; Raja SN *et al.* In: Wall PB, Melzack R (eds). *Textbook of Pain*. 4th ed. Churchhill Linvingstone; London, UK: 1999; Woolf CJ. *Drugs* 1994; 47(Suppl 5):1-9.


Adverse Effects of Opioids

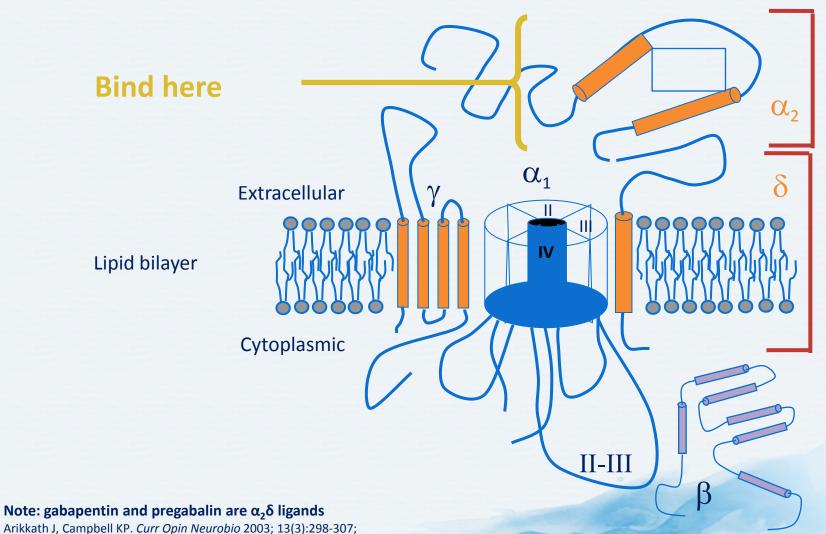
System	Adverse effects
Gastrointestinal	Nausea, vomiting, constipation
CNS	Cognitive impairment, sedation, lightheadedness, dizziness
Respiratory	Respiratory depression
Cardiovascular	Orthostatic hypotension, fainting
Other	Urticaria, miosis, sweating, urinary retention

CNS = central nervous system

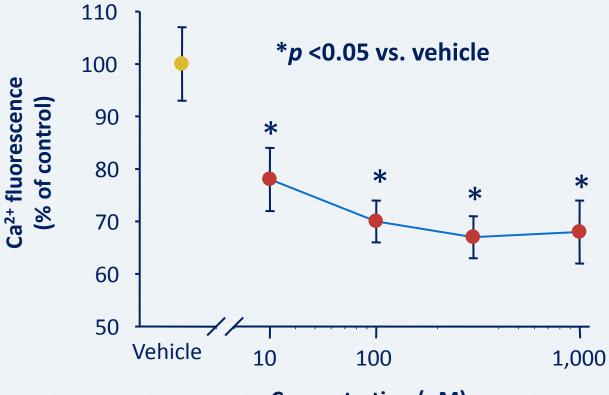
Moreland LW, St Clair EW. *Rheum Dis Clin North Am* 1999; 25(1):153-91; Yaksh TL, Wallace MS. In: Brunton L *et al* (eds). *Goodman and Gilman's The Pharmacological Basis of Therapeutics*. 12th ed. (online version). McGraw-Hill; New York, NY: 2010.


Mechanism-Based Pharmacological Treatment of Neuropathic Pain

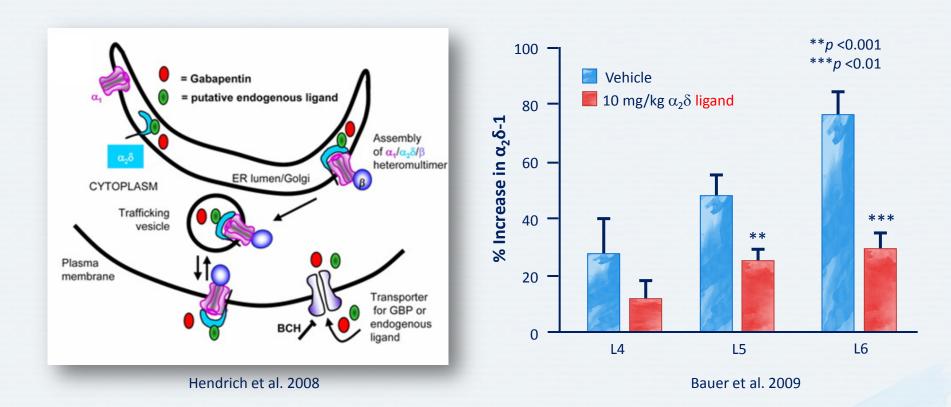
SNRI = serotonin-norepinephrine reuptake inhibitor; TCA = tricyclic antidepressant


Adapted from: Attal N *et al. Eur J Neurol* 2010; 17(9):1113-e88; Beydoun A, Backonja MM. *J Pain Symptom Manage* 2003; 25(5 Suppl):S18-30; Jarvis MF, Boyce-Rustay JM. *Curr Pharm Des* 2009; 15(15):1711-6; Gilron I *et al. CMAJ* 2006; 175(3):265-75; Moisset X, Bouhassira D. NeuroImage 2007; 37(Suppl 1):S80-8; Morlion B. Curr Med Res Opin 2011; 27(1):11-33; Scholz J, Woolf CJ. Nat Neurosci 2002; 5(Suppl):1062-7.

Role of $\alpha_2 \delta$ -Linked Calcium Channels in Neuropathic Pain


Note: gabapentin and pregabalin are $\alpha_2 \delta$ ligands Bauer CS *et al. J Neurosci* 2009; 29(13):4076-88.

$\alpha_2 \delta$ Ligands Bind to $\alpha_2 \delta$ Subunit of Voltage-Gated Calcium Channels

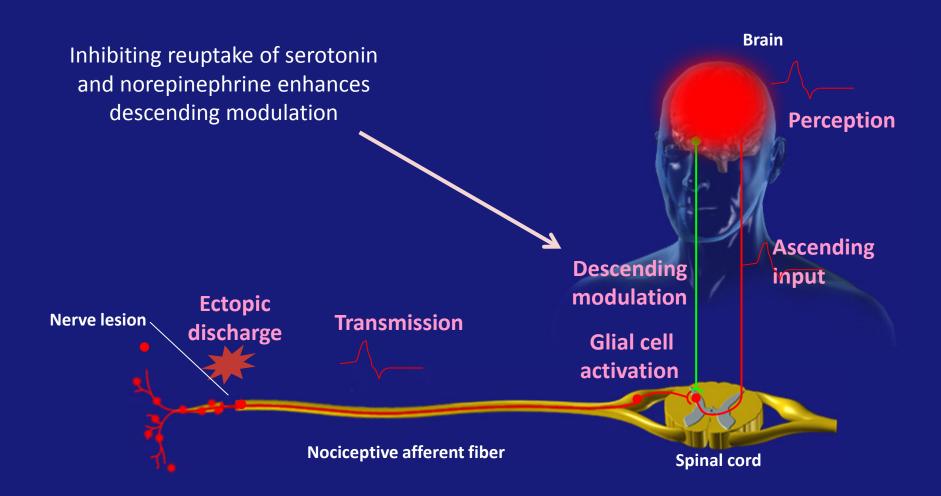

Catterall WA. J Bioenerg Biomembr 1996; 28(3):219-30; Gee NS et al. Biol Chem 1996; 271(10):5768-76.

$\alpha_2 \delta$ Ligands Reduce Calcium Influx in Depolarized Human Neocortex Synaptosomes

Concentration (µM)

$\alpha_2 \delta$ Ligands Modulate Calcium Channel Trafficking

- $\alpha_2 \delta$ ligands reduce trafficking of voltage-gated calcium channel complexes to cell surface in vitro
- $\alpha_2 \delta$ ligands prevent nerve-injury induced up-regulation of $\alpha_2 \delta$ in the dorsal horn


BCH = 2-(-)-endoamino-bicycloheptene-2-carboxylic acid; ER = endoplasmic reticulum; GBP = gabapentin Bauer CS *et al. Neurosci* 2009; 29(13):4076-88; Hendrich J *et al. Proc Natl Acad Sci U S A* 2008; 105(9):3628-33.

Adverse Effects of $\alpha_2\delta$ Ligands

System	Adverse effects
Digestive system	Dry mouth
CNS	Dizziness, somnolence
Other	Asthenia, headache, peripheral edema, weight gain

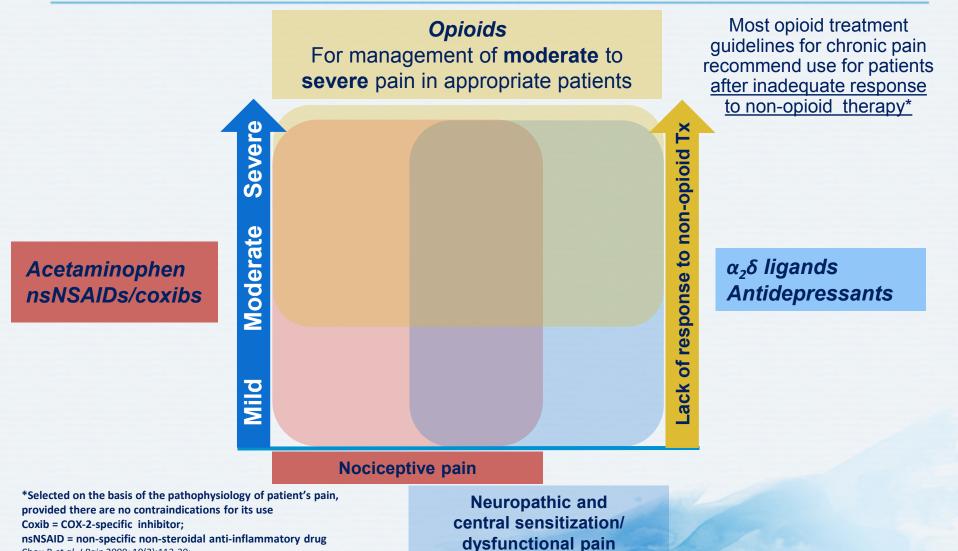
 $\alpha_2 \delta$ ligands include gabapentin and pregabalin CNS = central nervous system Attal N, Finnerup NB. *Pain Clinical Updates* 2010; 18(9):1-8.

How Antidepressants Modulate Pain

Verdu B et al. Drugs 2008; 68(18):2611-2632.

Suggested Mechanisms of Analgesic Action of Antidepressants

Mechanism of Action	Site of Action	ТСА	SNRI
Reuptake inhibition	Serotonin Noradrenaline	+ +	+ +
Receptor antagonism	α-adrenergic NMDA	+ +	- (+) milncipran
Blocking or activation of ion channels	Sodium channel blocker Calcium channel blocker Potassium channel activator	+ + +	(+) venlafaxine/ - duloxetine ? ?
Increasing receptor function	GABA _B receptor	+ amitripline/ desipramine	?
Opioid receptor binding/ opioid-mediated effect	Mu- and delta-opioid receptor	(+)	(+) venlafaxine
Decreasing inflammation	Decrease of PGE2 production decrease of TNFα production		


GABA = γ-aminobutyric acid; NDMA = N-methyl-D-aspartate; PGE = prostaglandin E; SNRI = serotonin-norepinephrine reuptake inhibitor; TCA = tricyclic antidepressant; TNF = tumor necrosis factor Verdu B *et al.* Drugs 2008; 68(18):2611-32.

Adverse Effects of Antidepressants

System	TCAs	SNRIs
Digestive system	Constipation, dry mouth, urinary retention	Constipation, diarrhea, dry mouth, nausea, reduced appetite
CNS	Cognitive disorders, dizziness, drowsiness, sedation	Dizziness, somnolence
Cardiovascular	Orthostatic hypotension, palpitations	Hypertension
Other	Blurred vision, falls, gait disturbance, sweating	Elevated liver enzymes, elevated plasma glucose, sweating

CNS = central nervous system; TCA = tricyclic antidepressant; SNRI = serotonin-norepinephrine reuptake inhibitor Attal N, Finnerup NB. Pain Clinical Updates 2010; 18(9):1-8.

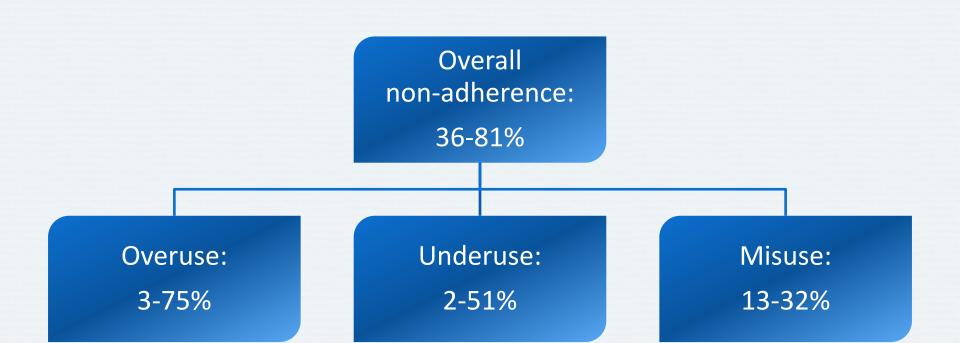
Assessment of Pain Pathophysiology Can Help Guide Appropriate Medication Therapy

Chou R et al. J Pain 2009; 10(2):113-30;

Scholz J, Woolf CJ. Nat Neurosci 2002; 5(Suppl):1062-7.

But... Patients with Chronic Pain of Just One Type of Pain Pathophysiology May be Rare

- Patients may have different pathophysiologic mechanisms contributing to their pain
 - e.g., complex regional pain syndrome has multiple potential mechanisms, including nerve injury and inflammation – "mixed pain state"


• Therapies that will work better for a particular patient are likely to depend on the mechanisms contributing to the patient's pain

• Patients with mixed pain may benefit from combination therapy

Dowd GS et al. J Bone Joint Surg Br 2007; 89(3):285-90; Vellucci R. Clin Drug Investig 2012; 32(Suppl 1):3-10.

Adherence

Non-adherence to chronic pain medication is common...

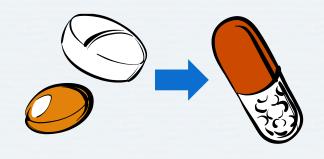
But rates vary substantially from study to study

Demographic and Medication-Related Factors Can Help Predict Non-adherence

- Younger age
- Health insurance compensation
- Cigarette smoking
- Self-medication
- Greater number of prescribed analgesics
- Greater number of pills to be taken

Non-adherence Is Also Related to Patient Concerns

Type of	Patient concern				
non-adherence	Level of pain	Perceived need	Mistrust in doctor	Side effects	Concern over withdrawal
Non-adherence	NS	NS	<i>p</i> <0.01	<i>p</i> <0.01	<i>p</i> <0.001
Overuse	NS	<i>p</i> <0.001	NS	<i>p</i> <0.05	NS
Underuse	<i>p</i> <0.05	NS	<i>p</i> <0.01	NS	<i>p</i> <0.01


NS = non-significant Rosser BA *et al. Pain* 2011; 152(5):1201-5.

Strategies to Improve Adherence

- Simplify regimen
- Impart knowledge
- Modify patient beliefs and human behavior
- Provide communication and trust
- Leave the bias
- Evaluate adherence

Simplifying Medication Regimen

- If possible, adjust regimen to minimize:
 - Number of pills taken
 - Number of doses per day
 - Special requirements (e.g, bedtime dosing, avoiding taking medication with food, etc.)

- Recommend all medications be taken at the same time of day (if possible)
- Link taking medication to daily activities, such as brushing teeth or eating
- Encourage use of adherence aids such as medication organizers and alarms

American College of Preventive Medicine. *Medication Adherence Clinical Reference*. Available at: <u>http://www.acpm.org/?MedAdherTT_ClinRef</u>. Accessed: October 8, 2013; van Dulmen S *et al. BMC Health Serv Res* 2008; 8:47.

Imparting Knowledge

- Provide clear, concise instructions (written and verbal) for each prescription
- Be sure to provide information at a level the patient can understand
- Involve family members if possible
- Provide handouts and/or reliable websites for patients to access information on their condition
- Provide concrete advice on how to cope with medication costs

American College of Preventive Medicine. *Medication Adherence Clinical Reference*. Available at: <u>http://www.acpm.org/?MedAdherTT_ClinRef</u>. Accessed: October 8, 2013.

Modifying Patient Beliefs and Behaviors: Motivational Interviewing Technique

Techniques

- Express empathy
- Develop discrepancy
- Roll with resistance
- Support self efficacy

Examples

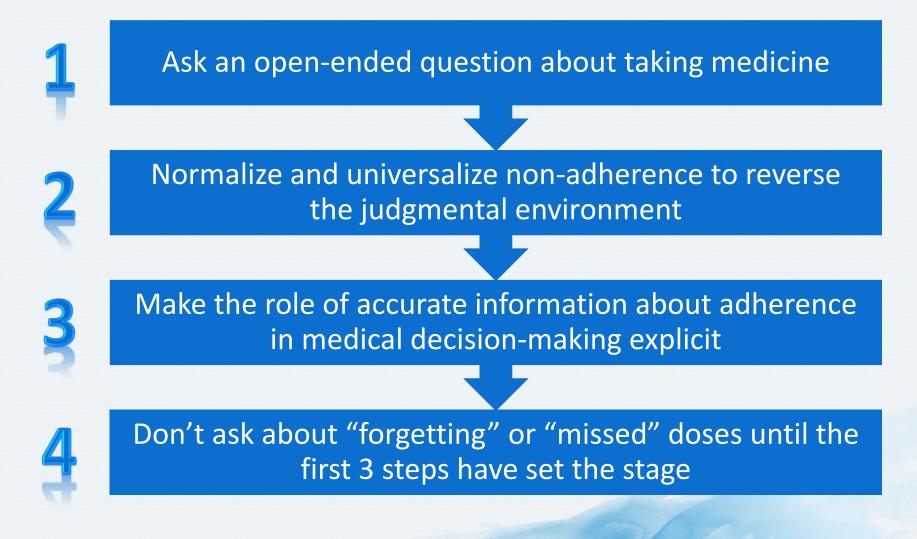
- "It's normal to worry about medication side effects"
- "You obviously care about your health; how do you think not taking your pills is affecting it?"
- "I understand that you have a lot of other things besides taking pills to worry about"
- "It sounds like you have made impressive efforts to work your new medication into your daily routine"

Bisono A *et al.* In: O'Donoghue WT, Levensky ER (eds). *Promoting Treatment Adherence:* A *Practical Handbook for Health Care Providers.* SAGE Publications, Inc.; London, UK: 2006.

Providing Communication and Trust: Communication Tips

- Be an active listener
 - Focus on the patient
 - Nod and smile to show you understand
- Make eye contact

- Be aware of your own body language
 - Face the patient
 - Keep arms uncrossed
 - Remove hands from pockets
- Recognize and interpret non-verbal cues


McDonough RP, Bennett MS. *Am J Pharm Educ* 2006; 70(3):58; Srnka QM, Ryan MR. *Am Pharm* 1993; NS33(9):43-6.

Leaving the Bias

American College of Preventive Medicine. *Medication Adherence Clinical Reference*. Available at: <u>http://www.acpm.org/?MedAdherTT_ClinRef</u>. Accessed: October 8, 2013.

Evaluating Adherence: 4-Step Strategy for Detecting Non-adherence

Hahn S, Budenz DL. Adv Stud Ophthalmol 2008; 5(2):44-9.

Summary

Management: Summary

- It can be challenging to choose the best treatment for chronic and acute pain
- An approach combining physical and psychosocial interventions is recommended
- Choice of pharmacotherapy may be guided in part by the type(s) of pain
- Adherence to therapy is necessary for optimal patient outcomes